Latent variable discovery in classification models

نویسندگان

  • Nevin Lianwen Zhang
  • Thomas D. Nielsen
  • Finn Verner Jensen
چکیده

The naive Bayes model makes the often unrealistic assumption that the feature variables are mutually independent given the class variable. We interpret a violation of this assumption as an indication of the presence of latent variables, and we show how latent variables can be detected. Latent variable discovery is interesting, especially for medical applications, because it can lead to a better understanding of application domains. It can also improve classification accuracy and boost user confidence in classification models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using multivariate generalized linear latent variable models to measure the difference in event count for stranded marine animals

BACKGROUND AND OBJECTIVES: The classification of marine animals as protected species makes data and information on them to be very important. Therefore, this led to the need to retrieve and understand the data on the event counts for stranded marine animals based on location emergence, number of individuals, behavior, and threats to their presence. Whales are g...

متن کامل

Invariant Gaussian Process Latent Variable Models and Application in Causal Discovery

In nonlinear latent variable models or dynamic models, if we consider the latent variables as confounders (common causes), the noise dependencies imply further relations between the observed variables. Such models are then closely related to causal discovery in the presence of nonlinear confounders, which is a challenging problem. However, generally in such models the observation noise is assum...

متن کامل

Latent Variable Discovery Using Dependency Patterns

The causal discovery of Bayesian networks is an active and important research area, and it is based upon searching the space of causal models for those which can best explain a pattern of probabilistic dependencies shown in the data. However, some of those dependencies are generated by causal structures involving variables which have not been measured, i.e., latent variables. Some such patterns...

متن کامل

Constrained Local Latent Variable Discovery

For many applications, the observed data may be incomplete and there often exist variables that are unobserved but play an important role in capturing the underlying relationships. In this work, we propose a method to identify local latent variables and to determine their structural relations with the observed variables. We formulate the local latent variable discovery as discovering the Markov...

متن کامل

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Artificial intelligence in medicine

دوره 30 3  شماره 

صفحات  -

تاریخ انتشار 2004